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Regular representations of the Somigliana formulae are constructed to solve elastodynamic equations 

for travelling loads. For supersonic velocities a near-front regularization of the integrand functions is 

proposed. 

One of the methods of constructing the boundary integral equations in boundary-value 
problems in the theory of elasticity is based on obtaining Somigliana-type formulae expressing 
displacements inside the domain in terms of boundary values of stresses and displacements 
and fundamental solution tensors. These have been previously constructed [l] for the 
equations of the theory of elasticity of an isotropic body in the case of time-independent 
travelling loads. 

1. STATEMENT OF THE PROBLEM 

Consider the class of self-similar solutions 

u=n(x,,jr243 -ct) (1.1) 

of the equations of motion of a linearly-elastic homogeneous medium [2] 

0ii.j - ~~i,n + Gi = 0 (1.2) 

ts# = c,,,u, , (1.3) 

where oii and uj are the Lagrangian Cartesian components of the displacements and stress 
tensor, and C,,, is the tensor of the constants of elasticity, which in the isotropic case has the 
form 

Ciiu = ~,6, + p(6,6 j, + 6,6 Jo ) (1.4) 

If the vector (Gi) has the structure of (l.l), it is natural to seek a solution in analogous form. 
Here the symbol after the comma denotes differentiation with respect to the appropriate 
coordinate or t, and repeated indices i, j, k, 1 imply summation from 1 to 3. 
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We write Eqs (1.2) in the moving system of coordinates 
(1.3) and (1.4) into account 

( xl, xi, x;) = (x1, x2, x3 -ct) taking 

= <C: - Czz)Uj,ii + Czz~i - C'Ui.33 f Gi = 0 (1.5) 

where c, and c, are the velocities of bulk and shear waves in the elastic medium and A is the 
Laplace operator in R3. We will now drop the primes in xi’. 

Let S be some sufficiently smooth closed cylindrical surface whose generator is parallel to 
the x, axis of the Cartesian system of coordinates (x1, x,, x,), and let n = (n,, n,, nJ be the 
unit vector of the outward normal to S. The surface S separates the domains S- and S’ in R3. 
We shall assume that u is a solution to Eq. (1.5) defined in S- + S, and that it is known that 

uj(X)="~(x)v o~(X)=nj(X)=pi(X), X E S (1.6) 

It is required to find n(x) in the domain x E S, i.e. to construct 
formula for travelling loads. 

2. FUNDAMENTAL SOLUTIONS 

an analogue of Somigliana’s 

It has been shown [l] that the generalized solution u= u*(x)H;(x) of Eq. (1.5) can be 
represented in the form 

.I, I 
XES-, 

H;(x)= fi, XES, 

0, XES+ 

where S,(x) is a simple layer on S [3], H;(x) is the characteristic function of the set S, and U: 
is Green’s tensor of the equations of motion (1.2) corresponding to a concentrated body force 
Gi = -S,$i(x) (6, being the Kronecker delta and 6(x) the delta-function) 

U,~(x)=C;2sijf2(T,x~~+C-2(f;ij(T,~~)-~fZij(T.Xg)) (2.2) 

Here 

, c < cj 

c = ci 

2H(-~3 -mjr)(xg -mfr2)-x, c > ci 
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H(x) is the Heaviside step function and AZ, --C/Q is the Mach number (with no summation 
over subscripts in square brackets), 

It is conve~ent to separate the bulk and shear components of the tensor Ut 

u,; = u,;, + u,;z 

$1 = c-*f,ii(“x3), iTif.2 =c;*s,fi(~,x3)-c"f*ii(r,x3) 

(2.3) 

Using Hooke’s law (1.3), (1.4), we introduce the fundamental stress tensors 

Safe = hv~,~li, + fl(Ui,j + U~~,i) 

rli(x,n)‘= S~~(X)nj 

It follows from (1.2) that 

4Tk.i = PC2Uit,33 -PSj~6(X) 

from which by a convolution with ~~(x~~ we obtain 

(2.4) 

~~~*Vi(X)GF(X)=pC*(U~~ *v3(x)6F(x)),3 -PsjmH~(x) (2.5) 

Here F is an arbitrary sufficiently smooth surface in R3 bounding the set F-, and v(x) is the 
unit vector of the outward normal to F. 

It is convenient to introduce the transposed tensor 

TJ(x,n)= ri(x,n) 

which allows one to write (2.5) in integral form 

(2.6) 

1~(Y~x,v(r))a(Y)=p~~~~~x)-pe2$~u~(x,y)v~(g)dr(y) (2.7) 
F 

Here and below 

U~(X,Y)=U~~(X_YY)9 ~j(X,Y,n)=~~(X-Y9n) (2.8) 

If F is a cylindrical surface of type S on which u, = 0, the equality takes the classical form 

ITj(YW(Y)W(Y) = pS,&(x) 
F 
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similar to Gauss’s formula for a double-layer potential [3]. The static analogue of the tensor qi 
satisfies exactly the same relation [4]. 

We will show that the tensor q is a fundamental solution of Eq. (1.5). 
It follows from (2.4) and (2.6) that 

Consequently 

(2.9) 

(2.10) 

Here we have used the symmetry property of Green’s tensor (see (2.2)) 

$(X)=UJi(X) 

It follows from (2.2), (2.6) and (2.9) that 

qx,.)=$ ( (2Mf -@In/f,, +@ ‘sy h +ni 2.j I a f 1 -2$(f2ii-fig> 1 (2.11) 

We shall use the tensors introduced in the integral form of (2.1). As with U,, we shall 
separate the bulk and shear components of the tensor TN : TM = ToI +Kj2, which are easy to write 
out using (2.11). 

3. SUBSONIC LOADS (c<cJ 

In this case [1] the tensor 17: has removable singularities along the X, axis, except for the 
point x=0 because as r+O, x, +O 

Pi-v,- ‘?(mt Lnr, 

21x,1 
2), v-l _v,-I _ 120+2$) 

1 21x,1 

From (2.3) it follows that along any ray passing through the point x= 0, as 

where vvs isaboundedfunctionof8, cp:coscp=x,lr, sincp=x,lr, u=arccos(x,lZ?). 
V,*(x) has similar asymptotic behaviour when R + =. Consequently the singularity 

tensor I;: is of the l/R2 type. 

(3.1) 

(3.2) 

of the 
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These properties of the tensors U!(x) and T?(x) allow us to write the convolution (2.1) in 
integral form using the notation (2.4), (2.6) and (2.8) 

p~H,-(x)=~(u~(x,Y)P/(Y)-T~:J(x,Y,n(Y))u,(Y))dr(Y) (3.3) 
S 

For x E S the integrands have no singularities and the integrals converge if y E S, 3~ > 0 

pi(y) = O(llyll)'*, uj(y) = o(1) as -Ilyll+ 0~ (3.4) 

bj(y), uj(y) are locally-integrable functions). 
The form of the formula is identical to that of Somigliana’s formula of static theory of 

elasticity [2]. It is also valid for x E S if one uses the definition of H;(x) in (2.1). However, in 
this case the integral containing TM is singular, and has to be interpreted as a principal value. 
The proof of this fact is based on the antisymmetry properties of Tt with respect to x and is 
similar to that in the static theory of elasticity [5]. 

For x ES the formula gives a singular boundary integral equation for solving fundamental 
boundary-value problems of the theory of elasticity in the case of subsonic travelling loads. 

4. SUPERSONIC LOADS (ccc,) 

In this case the components of Green’s tensor have a weak singularity of order (x, + ,~)-“’ 
on the conical fronts x, = -mjr. Hence the first integral in (3.3), which contains q, exists. 
However, the second integral is formal, because higher-order singularities (like (x3 + mjr)-3’2) 
of the tensor q? are not integrable on S for any x. One consequently cannot use formula (3.3) 
in the supersonic case. 

We return to (2.1), taking the differentiation outside the convolution 

P”i(x)~ui;*Pj(x)G~(x)+(~~n~(x)6~(x)*u~)~~ + 

In more-abbreviated notation using (1.4) we have 

The formula can then be written in the integral form 

P”iH~(x)=Iuli(x,Y)Pi(Y)dr(Y)+c. 
s 

J,,&, $jrr,c.,J, u&)n~(y)dr(y) 
111 

(4.1) 

(4.2) 

(4.3) 

where all integrals exist; here Gj = 0. 
Suppose that the support of the travelling load p(y) is contained in the set y E S, ya c 0, i.e. 

pi(y)=0 (i=l.2.3) for Y~>O (4.4) 

which corresponds to the physical concept of a real load, which is, as a rule, finite. 
Obviously the displacements satisfy the condition that the load overtakes the propagation of 

perturbations in the medium. 
Weput zX=(xl, xz)zY=(yl; yz), r=Ilz,- 3 II K,(x) = (y : y, = x3 + m,r) are wave fronts of the 

tensor U,(x, y) with vertex at the point x; the interior of these cones is the support of U,. 
Since m front of q - m fronts Vi, = 0 and relation (1.4) holds, (4.3) acquires the form 
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Here the integral over the cylindrical surface S is represented in the form of a double 
integral along the generator and along the directrix D of the cylinder S perpendicular to it; 
& (2,) is the differential of the arc length along D . 

We introduce the tensors 

w~tx,~,)=w~1tx,~~)+~~2tx,~~) 

Wb(x,a,)= M-x3 -m& f U~(X,y)~3 
*+v 

By calculation we obtain 

27&2W@ = F2(Htv; x3+-K- -H2Vf)(lX3l(S&i]3 -<i<j)-lji3<j -6j3<i)- HI In - X ( 1 v 

Hq = H(-m,r - x3) 

It follows from (4.6) that 

W&(X,Z,)=O for x3 > -mg 

In particular 

~~~x,z,~=O for x,>O 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

It is clear that the tensor Vv, has only finite d~contin~ties at the fronts 

Sp(x) = {a,:m,lln, -z,ll+q = 0). 

We denote the support of wjq by S;(x) = ( x, : mq II z, - zY II-+x, c 0). Since when Y -+ 0, x3 + 0 

the tensor W*(x, z,) has no strong sing~arities with respect to r, and the singularity as r -+ 0 is 
of order In r. 

We put d, =(yi, yz, x3+m,r) and perform a near-front regularization of the integrands in 
relations (4.5) 
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the expression under the second integral sign has no singularities at the fronts K,(x). We also 
note that S, is identical with D only if 

Consequently, if the inequality is not satisfied, at the ends of the arc of integration S, we 
have X, + mqr = 0. However, at these points the integrands in the second and third integrals of 
(4.10) vanish by definition. 

These properties allow us to take the differentiation under the integral sign. Here the second 
integral can be differentiated with respect to all x, and the third only when x e S. 

It is convenient to introduce tensors Hii, generated from the tensors Wgq and similar to the 

For an isotropic medium they have the same form as (2.11), 
place of U,*. 

Performing the differentiations, we obtain 

(4.11) 

where W,, is substituted in 

+ j Hijq (x+ ,n(Zy ))uj (dq Mazy 1 
D 

(4.12) 

The formula is similar to Somigliana’s formula for supersonic loads. It enables one to find 
the displacements inside the domain S- from specified values of the displacements and stresses 
at the boundary S. 

For x E S the last integral is a singular contour integral. One can show using the definition of 
H;(X) that equality (2.2) holds if this integral is interpreted in the principal-value sense. In this 
case (4.11) gives a boundary integral equation for solving the first or second boundary-value 
problems of elastodynamics for supersonic travelling loads. 

5. TRANSONIC LOADS c,<ccc, 

The above arguments allow one to write down directly a regular integral analogue of the 
Somigliana formula for transonic velocities 

p&(X)= jH(-qr-x3)&zr) i ("ij2(x9Y)Pj(Y)- 
D x3+5r 

-~j2(X,Y,n(Y))(uj(Y)-uj(d2>>)dy, + IHij2(x,z,,n(?~))uj(d2)dS(Zy)+ 
D 
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+jdr(z,) j(u~,(x,Y)Pi(Y)-~jt(x,Y,n(Y))uj(Y))dy, 
D -0D 

which for XE S also gives a boundary integral equation for solving the corresponding 
boundary-value problems. 

For sonic velocities when c = c, Somigliana’s formula has a similar form. For c = c1 one 
should use formula (4.12). In both cases only the form of the tensors U, and Ki changes. 
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